Magnetic resonance spectroscopic imaging using parallel transmission at 7T

نویسنده

  • Borjan Gagoski
چکیده

Conventional magnetic resonance spectroscopic imaging (MRSI), also known as phase-encoded (PE) chemical shift imaging (CSI), suffers from both low signal-to-noise ratio (SNR) of the brain metabolites, as well as inflexible tradeoffs between acquisition time and spatial resolution. In addition, although CSI at higher main field strengths, e.g. 7 Tesla (T), offers improved SNR over clinical 1.5T or 3.0T scanners, the realization of these benefits is limited by severe inhomogeneities of the radio frequency (RF) excitation magnetic field (B1), which is responsible for significant signal variation within the volume of interest (VOI) resulting in spatially dependent SNR losses. The work presented in this dissertation aims to provide the necessary means for using spectroscopic imaging for reliable and robust whole brain metabolite detection and quantification at high main field strengths. It addresses the challenges mentioned above by improving both the excitation and the readout components of the CSI acquisition. The long acquisition times of the PE CSI are significantly shortened (at least 20 fold) by implementing the time-efficient spiral CSI algorithm, while the B1 non-uniformities are corrected for using RF pulses designed for new RF excitation hardware at 7T, so-called parallel transmission (pTx). The B1 homogeneity of the pTx excitations improved at least by a factor of 4 (measured by the normalized spatial standard deviations) compared to conventional single channel transmit systems. The first contribution of this thesis describes the implementation of spiral CSI algorithm for online gradient waveform design and spectroscopic image reconstruction

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density‐weighted concentric circle trajectories for high resolution brain magnetic resonance spectroscopic imaging at 7T

PURPOSE Full-slice magnetic resonance spectroscopic imaging at ≥7 T is especially vulnerable to lipid contaminations arising from regions close to the skull. This contamination can be mitigated by improving the point spread function via higher spatial resolution sampling and k-space filtering, but this prolongs scan times and reduces the signal-to-noise ratio (SNR) efficiency. Currently applied...

متن کامل

Clinical Multiparametric MR Imaging of Breast Tumors at 7 Tesla

Magnetic Resonance Imaging (MRI) of the breast is a powerful imaging tool for the characterization, diagnosis, staging, and treatment monitoring of breast cancer. Applications at clinical magnetic field strengths (≤ 3T) have been extensively described. At 7T*, substantial improvements in image quality could be provided, if technical challenges can be overcome. In this article, the authors discu...

متن کامل

(1)H MR spectroscopic imaging of the prostate at 7T using spectral-spatial pulses.

PURPOSE To assess the feasibility of prostate (1)H MR spectroscopic imaging (MRSI) using low-power spectral-spatial (SPSP) pulses at 7T, exploiting accurate spectral selection and spatial selectivity simultaneously. METHODS A double spin-echo sequence was equipped with SPSP refocusing pulses with a spectral selectivity of 1 ppm. Three-dimensional prostate (1)H-MRSI at 7T was performed with th...

متن کامل

(2 + 1)D‐CAIPIRINHA accelerated MR spectroscopic imaging of the brain at 7T

PURPOSE To compare a new parallel imaging (PI) method for multislice proton magnetic resonance spectroscopic imaging (1 H-MRSI), termed (2 + 1)D-CAIPIRINHA, with two standard PI methods: 2D-GRAPPA and 2D-CAIPIRINHA at 7 Tesla (T). METHODS (2 + 1)D-CAIPIRINHA is a combination of 2D-CAIPIRINHA and slice-CAIPIRINHA. Eight healthy volunteers were measured on a 7T MR scanner using a 32-channel hea...

متن کامل

High-flip-angle slice-selective parallel RF transmission with 8 channels at 7 T.

At high magnetic field, B(1)(+) non-uniformity causes undesired inhomogeneity in SNR and image contrast. Parallel RF transmission using tailored 3D k-space trajectory design has been shown to correct for this problem and produce highly uniform in-plane magnetization with good slice selection profile within a relatively short excitation duration. However, at large flip angles the excitation k-sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011